Part 2: The Role of Phytomedicine in the Challenges of Emerging, Re-Emerging Diseases; and Pathogens Resistance to Antibiotics

Omari Amuka, Paul Okemo, Alex Machocho, Paul Mbugua, Eliud NM Njagi, Anthony Kebira Nyamache

Abstract
Reviews literature related to the study. It focuses on the historical use of plants as medicine by human. The approach taken is based on the geographical location of various civilizations in which the plants are/were used as source remedies throughout the five continents of the world. Topical issues and an overview cover on medicinal plants, past and their present uses, use of antibiotics in allopathic medicine and development of antimicrobial and antifungal resistances to the currently used drugs. In addition, issues on the emergence and re-emergence of new and old diseases have also been covered.

Keywords: Antibiotics; Re-Emerging Diseases; Pathogens Resistance.

1. Introduction
Reviews literature related to the study. It focuses on the historical use of plants as medicine by human. The approach taken is based on the geographical location of various civilizations in which the plants are/were used as source remedies throughout the five continents of the world. Topical issues and an overview cover on medicinal plants, past and their present uses, use of antibiotics in allopathic medicine and development of antimicrobial and antifungal resistances to the currently used drugs. In addition, issues on the emergence and re-emergence of new and old diseases have also been covered. A global review of phytomedicine in relation to ethnology reveals that the science of plants in the early days was based on the utilitarian approach[1]. This is evident because there are several records of highly prized plant species which have been mentioned several times in literature. An example is found in the Chinese civilization where there are records of one plant, Artemisia annua L. whose records are available in the tomb of Mawangdui Han dating back to 168 BC[2]. It is known to have treated over 52 kinds of diseases[3]. The plant is further mentioned in Zhou Hou Bei Ji Fang[4] which was written in 340 AD. The realisation of its potential in the mid-1960s, led to its commercialisation. It is, therefore not new to South East Asians since the Chinese have used it for over the last 2,000 years against fever and other related ailments. In such a rich culture, there are in records other plant species that were and are still being used for curative purposes[5]. There are topical issues to be addressed here, such as in the subsequent subtopics.

2. Fungal infections and their challenges
Perhaps the most stubborn disease causing micro-organisms are the fungi. All the way from oomycetes to fungi imperfecti, they are known to inflict suffering both to plants and animals[6,8]. The cost implications and losses caused by them are enormous. At the moment, the remedies remain elusive. However, it has been proved that higher plants have the potential of providing solutions to these problems in that they have active principles, which are antifungal[7]. The bark of Butea monosperma (Caesalpiniaeeae) extracted with petroleum and ethyl acetate yielded biologically active compounds against Cladosporium cladosporioides. Due to the upsurge in the number of immunosuppressed and immunocompromised infections the world over,
it has become imperative to develop new antifungal drugs, which can be of benefit to humans[7]. Although most of the plant extracts from native plants from North America had antifungal activities on various parasitic fungi; they were only slightly active against the more susceptible dermatophytes like Microsporum cookei, Microsporum gypseum and Trichophyton mentagrophyt. There are better prospects of obtaining derma fungicides from the tropics, which have a larger biodiversity as compared to that of the northern temperate regions. This holds true because most of the species like Rhus glabra (Anacardiaceae), Opuntia fragilis (Cactaceae) and Achilles millefolium ssp pubens have a wider and diversified genus representation in the tropics[8]. From South America in Surinam, it was also revealed that certain family members of the Apocynaceae and Logiaceae yielded indole alkaloids, which were active against Gram negative bacteria[9]. Some of the tests on organism individually included E. coli, which is a mild pathogen, B. subtilis that causes food poisoning, S. aureus, and C. albicans which could be disease causing organisms and are difficult to deal with particularly when they have turned infectious. The local populations used selected plants from the aforementioned families of plants in traditional medicine and had their activities verified by the scientists through in vitro and animal studies. Studies in other regions as in the case of Indians living in the Amazonia by other scholars like Spruce and Martins concluded that the communities had limited vegetal pharmacopoeia[10]. Later workers disapproved this fact and actually proved it is true that plants manufacture secondary, tertiary and quaternary metabolites which are used as source of protection against adverse ambient conditions. Such conditions are hot and arid, cold and arid, cold and humid. These conditions may occur once throughout the year or alternately in a year in the tropical areas. Whereas the adverse dry and arid environments, humid tropics, and temperate conditions have been well-investigated; the altitudes modify tropics to give afroamontane climates which have not been documented. Since the invasion of North America by settlers, Phytomedicine has evolved and the knowledge was passed from physician to physician and through generations[12,14]. During this period, there was partnership between home folk medicine and family doctors[13]. It is clear that all the common ills were treated by physicians using preparations from plants. This fact is supported by the earlier pharmacopoeias[11,13]. However, with the technological advances in the 20th century, simple plant and water remedies were gradually discarded. Today, several Americans have lost touch with herbal preparation. This fact notwithstanding the re-emergence of Native Indian American culture has increased interest in Native Indian herbal medicines. Some reasons for these resurgences of the popularity of traditional medicines are because pharmaceutical drugs are seen increasingly as oversubscribed, expensive and dangerous, yet herbal remedies are seen as less expensive and less toxic. Second, people increasingly are willing to self doctor their medical needs by investigating and using herbs and herbal preparations particularly those with chronic illness such as arthritis, diabetes, cancer and AIDS. Successful management of such ailments is elusive. People having such maladies are turning to herbs as adjuncts for treatments[14]. This has also led to enhancement of regulations status of herbal medicine the world over thus further re -enforcing the role such medicine plays in enhancing provision of health.

3. Role of plants in traditional medical practices
The World Health Organisation (WHO) estimates that 80% of the 4 billion people in the world depend on plants or plant related products for primary health care[15]. The sophistication of herbal remedies around the world varies with the technological advancement of the countries that make them and use them[16]. These remedies range from medicinal teas and crude tablets used in traditional medicine to concentrated, standardised extracts produced in modern pharmaceutical facilities and used in modern medical systems under a physician’s supervision[17]. Diseases caused by infectious microbes are some of the outstanding maladies of human race and livestock[18]. From time immemorial, the use and search for antimicrobials has and will always occupy the centre stage for research activities. There is need for research and innovation to combat new opportunistic infections as a result of HIV pandemic. Candida species are some of the commonest micro-organisms, which are responsible for nosocomial blood stream infection with mortality rate of almost 50%. Risk groups are dilapidated persons or patients with compromised immune systems and include infants, pregnant women, and diabetics, cancer, and AIDS patients treated previously with antibiotics[19]. Most antifungal drugs which have been licensed have therapeutic limitations in that there is fungal drug resistances, drug related toxicity, hazardous drug interactions or insufficient bio-availability. This explains why it is tricky to overcome or manage fungal problems that are encountered in life[20]. Since the beginning of scientific researches in medicinal plants, these plants have been a subject of investigations. Such studies have led to structure elucidation, which has caused an increase in publications dealing with pharmacological examinations of individual compounds of plant origin[19].

4. Pharmaceutical product development from plants
To obtain information about the usefulness of such natural resources for development of anticanidal/antifungal drugs, the identities of isolated compounds and their described properties have been compiled and are assisting in finding solutions against such complications that previously have been mentioned. With regard to pharmaceutical drugs discovery, it is evident that over the past two decades, interest in drugs derived from higher plants, especially the therapeutic ones, has increased markedly[20]. Currently, the major pharmaceutical companies have demonstrated renewed interest in investigating higher plants as sources of new lead structures and source of new drugs. The evaluation of such new compounds against nosocomial pathogens that have proved resistant to conventional antibiotics is a common phenomenon[21]. With this in mind about seven plants from Brazil were selected for screening against Pseudomonas aeruginosa, Enterococcus faecalis, Enterococcus coli, Staphylococcus aureus, A. calcoacticus and P. microbilis. These organisms are known to cause both surgical and post-surgical ailments as well as medical complications in human[19]. Quite a good number of them were extracted with various solvents and found to have antimicrobial activities against the above listed microbes[21].

~ 93 ~
5. Role of ethnobotany in drug development: Traditional systems all over the world are in the provision of primary health using the art they have inherited from ancient times.[22] The use of medicinal plants in the management of bacterial and fungal maladies is not a new phenomenon or art but a carryover from such antique periods as in the cases of traditional use of essential oils from medicinal plants. The Indian physician, Sushruta reported in 600 BC the medicinal use of essential oils. Oils from plants were used for the treatment of infections of the mouth, jaw and teeth.[23] Going through other literature, it is possible to compile a list of plant families from which essential oils that possess antimicrobial activity are found. They include families such as Asteraceae, Apiaceae, Lamiaceae, Fabaceae, Rutaceae, Zingiberaceae, Myrtaceae, Lauraceae, Cyperaceae and many others. Approximately 20% of the extracts are consumed as fragrances in perfumery and cosmetics, 5% in pharmacy and 15% are used for the isolation of components respectively.[24] Such compounds have been extracted from plants such as Larrea divaricata Cav.[25] It is reported that the plant has in vitro fungal toxic activities which is safe to the non-targeted cells and gives results which are comparable to Ketoconazole. The elucidation of compounds from antifungal activities is desired particularly from tropical plants.[26] A further reason for such desires is that the side effects of such extracts are minimal and therefore considered safe.

Ethnobotany is and remains an integral part of human life and through folklore, compounds extracted from plants and specific plant parts are worthy of further investigations for their use as potent sources of antimicrobial and anthelmintic agents. Herbal and plant medicines have become a popular form of healthcare. Even though several differences exist between herbal and conventional pharmacological treatments, herbal medicine can be tested for efficacy using conventional trial methodologies.[27] Moreover, many of today’s synthetic drugs originated from the plant kingdom, and only 200 years ago our pharmacopeia was dominated by herbal medicines. The non-complexity of herbal products in their physical structures, methods of preparations and investigations of their efficacy makes them desirable, particularly vis-à-vis their popularity. For some but by no means all herbal medicines, efficacy data are now emerging.[28] Most of the herbal drugs reviewed are efficacious for certain conditions. Generally speaking, research into phyto-medicines is much less active than research into conventional drugs.[21]

In most countries, Phytomedicine is considered or given as dietary supplements and thus lacks legal status to prove their efficacy and safety. Based on the data available todate, it is impossible to draw general conclusions about the therapeutic value of Phytomedicine, more so herbal ones for that matter. However, many of the plants presented in the reviews show promising activity in various antimicrobial agents and the efforts to regularise their therapeutic exploitation should not be relaxed.[21]

Ethnomedicine has been used in selecting and justifying continued use of certain traditional plants.[29] In combating methicillin resistant Staphylococcus aureus certain plant crude ethanol extracts were used. It was evident in the scientific records that water and ethanol extracts of certain traditional plants like Acalypha wilkesiana, Ocimum gratissimum, Ageratum conyzoides, Bridelia ferruginea, Terminalia avicennoides and Phyllanthus discoideus were ineffective.[30] Antimicrobially active alkaloids have also been isolated from alcohol extract of certain wild plants like Tabernaemontana chippi L. which are found along the tropical rainforest, in Ivory Coast, Liberia and Ghana.[30] The extractions yielded several alkaloids, which are active against both Gram positive and Gram-negative bacteria.[31] Ethno medical survey also showed that they were used against various ailments, the majority of which are bacterial in nature extracts but were ineffective in vitro in the study that their efficacies were too low to be recommended for traditional use.[29]

Elsewhere and in Africa, traditional medicine is well recognized and is of great value. Based on fact and faith, many potent drugs have been purified from traditional medicinal plants by persistent research.[32] They include: anticeancer, antimalaria, antibacterial and antidiabetic compounds.[33] In South Africa, there has been a trend to treat gastrointestinal complaints with traditional herbal preparations. Based on this traditional information, about fourteen traditionally used medicinal plants by the Venda rural communities were selected for clinical bacterial screening. Two plants, Warburgia salutaris and Maerua edulis showed antimicrobial activities that were higher than synthetic and conventional antibiotics. Further screening of other plants; Piper capense, Lippia javanica, Berchemia discolor, Cassine transvaalensis and Pseudalastylis maroniefolia not only possess antimicrobial efficacy but also fungicidal effects on Candida albicans, C. brusei and Cryptococcus neoformans.[33] It is now evident that indigenous knowledge can be employed in the development of today’s pharmaceutical industry. Some of the success in pharmaceutical industries is attributed to ethnobotanical information obtained from local people.[35]

Plants have remained a major source of medicine for human. Only a few families for purposes of review have been selected in this chapter. There are certain families which are relatively small as compared to the others though being included in studies. Araliaceae are tropical plants which are trees, shrubs or some are climbers that have been taken into account during the reviews. Some genera in this family are traditional drug yielders. The best known drug which has been used for centuries in the family is Panax schinseng.[34] Oleaceae is important in that Olea hochstetteri, which is found in the bible as olive plant yields high herbal drugs quality used both in pharmaceutical industries and culinary.[35] Asclepiadaceae too is important and has been used in folk medicine although currently they do not yield any medicine.[34] The Convolvulaceae, Boraginaceae, Verbenaceae, Lamiaceae, Solanaceae, Acanthaceae, Scrophulariaceae and Pedaliaceae families majority of which yield a variety of drugs like: hypotensive, expectorant and carminative. The plant species have been used in cooking since the advent of human time to date. They are also important constituents of perfumery because of their essential oils. Some selected genera are Lavandula, Ajuga, Origanum, Mentha, Basils and Salvia. Solanaceae family is best known for its alkaloids and has been used in medicine, both in the new and the old worlds. It also has those important vegetables like Lycopersicum spp, Solanum tuberosum, Capsicum annum and Solanum melongena to mention but a few. Some of the aforementioned species have been used in folklore and allopathic medicine. The genus Datura comprising; D. stramonium, D. metel, D.
In an attempt to document such practices of antibacterial means of treatment. For example in South Africa, majority of alternative antibiotics are too exorbitant and beyond the poor economic performance and political instability to mention but a few. In West Africa, *Garcinia cola* has been used as chewing stick and to treat stomach problems. When its ethanolic extract was screened against *E. faecalis* and *S. aureus*, the result showed high level of efficacy in the *in vitro* studies.

6. Missing data in Phytomedicine

The shortcomings with regard to medicinal plant studies and its use in the sub-Saharan Africa and the rest of the new world is that most of the knowledge were derived through oral traditions, but this fact does not infantilise the art and the use of plants for treatments amongst the African folk. Those above facts on Africa were later fortified in the quest for solutions to several maladies like malaria, asthma and later HIV or AIDS. Practitioners of traditional medicine (TM) in African include herbalists, plants and plant products sellers, traditional birth attendants, bonesetters, diviners, faith healers, traditional surgeons, spiritualists and others. There is a period and method through which such skills are mastered. The training for these practitioners is still by apprenticeship for a minimum of 7 years. During this period, the apprentice is expected to master all the ethno-practices which encompass all the botanicals and zoological which are used in the practices and their methods of use. There are specializations and the practitioners also refer patients to one another appropriately. The use of medicinal plants all over the world predates the introduction of antibiotics and other modern drugs in the African continent. Herbal medicine has been widely used and formed an integral part of primary healthcare all over the world. Traditional healers in Kenyan communities use herbal and phytotherapy to treat different kinds of ailments. The reputed efficacies of these medicinal plants have been experienced and passed on from one generation to the other. Apparently, of scientific proof of efficiencies of the medicinal plants as claimed by traditional healers in the Ogiek communities is lacking. Further, medicinal plants constitute an effective source of both traditional and modern medicine. It is estimated that about 80% of rural population depends on plants. Scientific screening of various plant extracts against microbes; bacteria, viruses and fungi is one sure way through which the continued use of such plant preparations could be justified. In the same vein a lot of plants have been used in culinary and this has also led to testing of their extracts for medicinal uses for example, the antimicrobial screening of *Decalepis hamiltonii* against food-related pathogenic micro-organisms. It has been demonstrated that plants indeed possess metabolites which are biologically active against pathogenic micro-organisms. This explains why such plants have the capabilities of prolonging shelf lives of foodstuff. It further demonstrated the usefulness of plant extracts in food preservation management and against contamination.

In sub-tropical Africa, bacterial and fungal infections represent an ever-increasing problem, more so in patients and people who are immunocompromised. It is imperative to establish the efficacy of the plants since majority of the local population are rural and over 70% of them depend on plants as therapeutic sources. However, most of the previous studies have been descriptive and exploratory. Biological, pharmacological and phytochemical data are lacking. Attempts have been made to highlight the potential and verify the continued use of medicinal plants from West Africa with tests ranging from antibacterial to antifungal properties. Other infectious diseases like diarrhea have threatened the lives of millions of people around the world. It is estimated that 20% of infants in developing countries die before their fifth birthday due to diarrhea. The problem is more compounded by antimicrobial resistances to antibiotics. The alternative antibiotics are too exorbitant and beyond the affordability of the rural people. Traditional setups had means of treatment. For example in South Africa, majority of the people have well organized traditional curative practices. In an attempt to document such practices of antibacterial screening of medicinal plants from South Africa; some workers have investigated certain aromatic plants by extracting their essential oils using them against some enteropathogens. They achieved comparable results, >40% of the tested plants that showed justified and continued use in traditional medicine.

There are also cases of comparing indigenous plant species with commercial species as in the case of *Tulbaghia alliacea* with *Allium cepa* in the management of candidiasis in South Africa. It emerged that the *T. alliances* extracts had comparable results to *A. sativum*, which is known to be a traditional commercial preparation and source of treatment in case of *Candida* spp. However, the commercial preparation is
too expensive for the rural poor. This problem is further complicated by the fact that most people who are affected by modern maladies in the developing world have limited access to conventional drugs due to high costs that are prohibitive \cite{48}. This is the commonest scenario particularly in the light of near epidermis AIDS deaths which reach 2500 daily and 10-20% having fatal results\cite{49}. The use of medicinal plants all over the world predates the introduction of antibiotics and other modern drugs on the African continent\cite{50}. Herbal medicine has been widely used and formed an integral part of primary healthcare all over the world\cite{51}. The screening therefore, justifies continued traditional use of several plant species against opportunistic fungal bacterial infections due to immunosuppressed conditions. Some screenings have been carried out elsewhere on indigenous plants in other continents and have however naturalized in other places where their potentials have been identified to possess other uses such as cosmetics, antiseptic agents’ germicides and carminatives\cite{49}. In Egypt, it emerged that the species; M. armillaris, M. alternifolia, M. leucadendron, and M. styphelioioides each yielded essential oils from the leaves that possessed bioactivity against Gram positive bacteria, Aspergillus spp, viral conjunctivitis disease and represent a detoxifiant in first line of defence against peroxidation of polyunsaturated fatty acids and phospholipids\cite{52}. Shigella dysenteriae, type A, is a common problem in the world and its scientific importance was recognized in Japan in 1893. However, to date there is no known vaccine for it\cite{53a}. Certain African Savannah medicinal flora for example, Mallotus oppositifolius extracts are currently used in the management of diarrhea and dysentery. In vitro hexane extracts have been demonstrated to have antimicrobial activity against Shigella spp.\cite{48, 46, 53}. Across Africa, typhoid fever, caused by Salmonella typhi remains a major problem in rural areas where there is poor sanitation\cite{53b}. To manage and overcome the malady Cleistopholis patens Benth (Annonaceae) is traditionally used in Nsukka, Nigeria to manage the disease\cite{43, 44}. There are certain botanicals which possess multiple uses in life\cite{53}. In Ethiopian livestock with mastitis, the herb Persicaria senegalensis is used as a remedy as well as topical antiseptic by women after delivery. In addition, for veterinary trials, it showed that the inflammation subsided within five to seven days of substituting animal cabbage fodder with herbs.

7. Role of aromatic plants in medicine in African traditional medicine

For centuries, the antimicrobial properties of essential oils from medicinal plants have been recognized, but scientifically studied only recently. It has been confirmed that some of them have antibacterial activities against food borne bacteria thus extending shelf lives of processed food\cite{53}. Several species of the genus Thymus covering T. pectinatus, T. capitatus and T. herba-barona all of which are wild were collected and steam distilled then the volatile oil extracts subjected to some Gram-negative and Gram-positive bacteria to ascertain the efficacy of the extracts; it emerged that the extracts were active against the bacteria and could be effectively employed in the preservation of food\cite{53}. African traditional treatments use holistic approach\cite{19}. The point demonstrates the uniqueness of the African medicine. Such types of treatments are variable and indicative of the specializations. The medicines include vegetable organs such as leaves, barks, roots, seeds, flowers, resins, latex or whole part of plant and/or together with parts of animals and/or some minerals like alum salts. African medicines may contain just one active ingredient but, flavourings, preservatives or colouring agents are also incorporated into the mixture\cite{20}. Such colourings may act but are not necessarily synergists. The African TM also has ingredients comprising several preparations which have ingredients for all ailments that need to be managed to restore the patient’s balance. These make the African (TM) fundamentally different from allopathic ones whereby several prescriptions may be made for reported case illness\cite{20}. In Africa (TM) is administered through liquid, solid, semi-solid or gas formulation, although intravenous or other forms of injections are absent. Other specialised forms of treatment used in Africa (TM) include obstetrics and gynecology, dry heat therapy, hydrotherapy, treatment of burns, fasting and dieting spinal manipulation, psychotherapy, spiritual healing, occultism and massage. Africans have their form of surgeries which include male circumcision, female genital mutilation, tribal marks, cutting of the umbilical cord, tooth abstraction, piercing of the ear lobes uvelectomy, whitlow operation, trephination and abdominal surgery. However, there is no x-ray or anaesthesia used in Africa. After the surgeries, the patients are treated with herbal preparations to heal the wounds\cite{54}. Such practices are mainly dependent on plant uses that have evolved over centuries and therefore, still remain part and parcel of rural cultures. The A. conyzoides collected are heated over fire and the resultant sap squeezed into palm oil expressed from the mesocarp of Elaeis guineensis. The concoction is used to rub the whole body. A. conyzoides has been used in vogue by Africans in dressing wounds and treatment of ulcers\cite{50}. It is used as a styptic in East Africa\cite{50}. The common uses is due to its antimicrobial activities which have been demonstrated scientifically but the occult power it is claimed to possess when collected at night cannot easily be rationalized on scientific basis, especially when there is no precise diagnosis of the disease. Some other examples are: in many African homes chewing sticks are used to clean the teeth. The chewed ends are used to clean the teeth thoroughly. The sticks impart varying sensations, a tingling, peppery taste and numbing is provided by Zanthoxylum zanthoxyloides Waterman, a strong bitter taste and frothing by Massularia acuminata (G. Don) and initial bitterness becoming sweeter later by Vernonia amygdalina Del. Buffered extracts of most of these sticks showed varying antimicrobial activities\cite{41}. The other practices in African (TM) such as; the collecting of medicinal plants is only done at a certain season, using cold extraction as opposed to boiling, using young leaves instead of old ones, using fallen dead leaves instead of young ones and using fresh ones, have been rationalized as being due to seasonal, diurnal or age variations in accumulation of active constituents of plants or the thermolability of active ingredients of certain plants\cite{50}. In Malawi, Polygala nyikensis which is used to treat skin conditions, proved both in vitro and in vivo to contain xanthones which have high antifungal activities \cite{42}. Further researches by\cite{39} to ascertain the efficacy of African medicinal plants showed that the use had very positive sides. For
example, the use of *Rauwolfia vomitoria*, roots to treat mentally ill patients; *Plumbago zeylenica*, roots for treatment of various fungal skin diseases, * Ocimum gratissimum* leaves which has essential oils to treat diarrhea are all justifiable [41]. Such plants like *Combretum mucronatum* and *Mitragyna stipulosa* have proved effective as anthelmintics but active ingredients have not been elucidated [41]. There are a lot more plants which are currently being used in folklore medicine but their characterization are yet to be done.

8. Challenges from antibiotic resistance by pathogens

Two pathways may be used by the organisms in acquiring the resistance. One is by modification of their own genes and two by acquisition of resistant genes from other bacteria. The resistance genes that encode systems to either expel or inactivate antibiotics occur naturally because many antibiotic producing organisms need them to avoid self-destruction [16]. Thus, we can say that antibiotic usage boosts the frequent development of resistant organisms [16]. Mutation occurs even during the single treatment and therefore, their target can be modified to confer resistance in a very short time after the introduction of new drug as was in the case of penicillin and more recently in linezolid, an oxazolidinone that interacts with the peptidyl +RNA binding P site at the 50s subunit [16]. The emergence of resistant micro-organisms has even preceded the clinical use of some antibiotics [57]. It can be said with certainty that the development of new classes of antibiotics and their introduction into medical use has been met by further development in antibiotic resistance such that multi-drug resistant bacterial pathogens are now common [18]. Bacterial resistance to conventional antibiotic treatment is most critical in hospital environment than anywhere else [39]. The spread of antibiotic resistance in clinical and community setting is therefore, a pragmatic phenomenon [60]. In Industrialized, countries bacterial multi-resistance to drugs is responsible for over 50% of infections. The problem of resistance is related to the degree of exposure to antibiotics and is exacerbated by inappropriate use, both in developed and developing countries. In a nutshell, antibiotic resistance poses one of the greatest challenges facing public health officials since it increases healthcare costs [24]. A good example is the re-emergence of tuberculosis especially *M. tuberculosis* that is multi-drug resistant and whose treatment is a hundred times more costly than the normal therapy [60]. The cost implications in the provision of healthcare may, therefore, be a major component in antibiotic therapy compliance. Those victims who cannot afford combination therapy or other costly prescribed drugs may altogether assume that they have recovered and default the treatment. Methicillin resistance involves a complex network of molecules and primarily depends on sufficient expression of penicillin binding protein with low sensitivity towards BLAS [60]. It further requires that other factors include the fine tuned regulation of autolytic activity of cell wall components, as well as optimal rate of peptidoglycan precursor formation and highly specific peptidoglycan precursor structure.

Regarding the evolution of various resistances, studies show that the resistance of bacteria to antibiotics has been a progressive one [60]. However, β-lactamase production evolved rapidly in *S. aureus* and > 50% of hospitals acquired *S. aureus* isolates were penicillin G. resistant by 1948. This proportion has reached between 80-90% to date [63]. The resistance is due to the introduction of various broad spectrum antibiotics including Methicillin which was introduced in 1960 [18]. It is unfortunate that Methicillin resistant strains of *S. aureus* have spread with speed to unknown proportions in many countries thus rendering it ineffective. Most countries have since then ceased to use the drug as an ultimate drug of choice. There have been genetic studies of the vancomycin resistant strains of *S. aureus* which reveal that Van A gene is the one that has mutated to lead to this resistance [64]. In *P. aeruginosa*, about 116 rectal swabs over a period of time revealed that: 78% the test organisms were resistant to penicillin. Of these, five strains were resistant to penicillin G and to other antibiotics in the following order: erythromycin, clindamycin (one strain), erythromycin A and tetracycline (one), erythromycin A (one), tetracycline (one) and fusidic acid (one) [65]. It finally emerged that antibiotics did not seem to impede the survival fitness of *S. aureus* in intestinal commensal microflora. Strains that have acquired resistance in one host may, therefore, spread to other hosts unhindered by their resistance phenotype [65]. There is indication that *S. aureus* exists in variant colonies. Such colonies referred to as small variant have been implicated in persistent and spread of chronic infections [66]. Data may lead to the understanding of the methicillin resistance of the *S. aureus* and the ways through which such complications could help in assisting the design of new therapeutic strategies. This loaded statement does not resolve the mystery of the current antibiotic resistances [67].

Epidemiology in human communities may present challenges in that certain diseases could remain pandemic, re-emerging and endemic. Respiratory tract infections are commonly caused by bacteria [68]. *P. aeruginosa*, *K. pneumoniae*, *S. pneumoniae*, *S. aureus*, *H. influenzae* and *Legionella* spp. *S. pneumoniae* is one of the commonest causative organism in common respiratory tract infections (RTI) [68]. Currently, antibiotic resistant *S. pneumoniae* has emerged and this threatens successful treatment of the disease which is common in urban communities [69]. To consolidate future antibiotic therapy, 649,552 patients: on treatment with selected macrolides, β-lactams like amoxicillin, amoxicillin/clavulanate, azithromycin, cephalaxin and levofloxacin produced interesting results [70]. Out of the 649,552 available patients of RTI and 7,252 susceptibility tests performed on *S. pneumoniae* isolates, there were no statistically significant trends in resistance for proportion following treatment by either β-lactams or macrolides among any of the RTI’s. Further, to this, there was no positive significant association between *S. pneumoniae* susceptibility and RTI treatment results apart from significant positive association between erythromycin. Also, there was non-susceptibility in ear isolates and macrolides treatment resolution for supportive a cuter otitis media. It was concluded that on the population level in *in vitro* *S. pneumoniae* non-susceptibility to macrolide or β-lactam antibiotics were not associated with treatment failure conditions of probable *S. pneumoniae* etiology [68].

With the foregoing revelations in mind, it has been noticed that there are prospects and challenges in developing new agents for tough Gram-negatives like *P. aeruginosa* and *K. pneumoniae* which are all known pathogens [37]. There is emphasis on the mechanisms through which the resistance is
developed against fluoroquinolones and aminoglycoside through the development of extended spectrum β-lactamase which is capable of inactivating both amino glycoside and fluoroquinolones[71]. The other reason for the development of resistance P. aeruginosa is due to reduction in the cell permeability and efflux of the drug, which occurs as cell mobilization[72]. The tendency of mutation to occur and the Mutator cells persisting is a very common phenomenon which leads to resistance to β-lactam and amino glycosides. There occurs a mismatch which is common in P. aeruginosa[72] multi-drug efflux transport may also cause high resistance in pathogenic bacteria to amino glycoside in the case of Acetobacter spp[73]. In prostates and mid-ear infections there is a tendency of multi-drug resistance development which is attributed to microfilm colony development[75]. After such development, there is a tendency of reduction of the cell permeability with the interior of the colony recruiting more cells to behave in that manner by the bacteria using quorum sensing mechanism[71].

The prospects for the discovery of new antibacterial agents given the seriousness of hospital acquired infections which are frequently multi-drug resistant; is to carry out empirical therapy[68]. This may be achieved by delaying the treatment until culture and susceptibility data for a particular infection are available. These resistances of the organisms to new antibiotics paint rather bleak pictures for new antibiotics[71]. Scientists work round the clock to ensure that they keep pace with pathogens to counter newly emerging strains[76]. Antibiotic use exerts influence on the resistance to several pathogens which were previously controlled by vancomycin as the drug of choice. This implies for example, that Enterococci have certain strains which are vancomycin resistant (VRE). In such situations, the first drugs of choice are ampicillin and aminoglycosides in nosocomial environments. However, in the event that resistance to aminoglycoside and ampicillin is experienced, certain glycopeptides are employed[77]. Further, it was revealed that in order to curb VRE it is empirical not only to control infection but to regulate and have careful administration of antibiotics like cephalosporin. The reason for this desire of restrictions is because such complicated antibiotics lead to the emergence of VRE’s and a tendency to colonization pressure from within the communities. Food is another conduit through which transmission of antibiotic resistance occurs[77]. This is why resistant pathogens are continually emerging rapidly. Surfacing of these resistant pathogens, poses a real threat to public health. Unfortunately, most of such foodstuffs such as milk products shrimps and groceries are bought from traders and eaten raw[78]. Such foodstuff could provide a time bomb and challenge to fight against antibiotic resistance by microbes in humans. Although it would be a long and tedious effort to clean up AR gene pool from the environment, interrupting the transmission of AR bacteria into human by focusing efforts on the food chains could be an effective strategy to combat the AR challenge in humans. This effort, however, remains a pipe dream.

9. References
14. Martin KW and Enst E. Herbal Medicines for
42. WHO. The promotion and development of traditional medicine. Technical report series. 1978; 622.
45. Ebi GC and Kamalu TN. Phytochemical and Antimicrobial Properties of constituents of “Ogwu
64. Aquila A, Herrera AG, Marrison D, Cosgrove B Perojo A, Montesinos I et al. Bacteriostatic activity of human lactoferrin against staphylococcus aureus is a function of it iron-binding properties and is not influenced by antibiotic resistance. Fems Microbiology Letters, 2001; 31: 143-152.


One important emerging transnational threat in this regard is the spread of infectious disease. This menace has garnered growing attention and resources from the U.S. government since the attacks of September 11, 2001, and the subsequent anthrax attacks. Many causes played a role in the development of the crisis, including promiscuous heterosexual sex, the low status of women, prostitution, sexual abuse and violence, a popular attitude that dismisses risk, as well as the failure to acknowledge the magnitude of the problem in the early and middle stages of the epidemic. As Americans’ exposure to emerging and reemerging pathogens has grown, the country’s ability to respond to infectious disease has diminished in many areas.