Hydrology and Floodplain Analysis

PHILIP B. BEDIENT
Rice University

WAYNE C. HUBER
Oregon State University

BAXTER E. VIEUX
University of Oklahoma
Dedication

To Cindy, Eric, and Courtney, to my parents for their guidance, and to my teachers, and to all my students over the past 35 years.

P.B.B.

To My Family

To my wife, Jean, and to our children William, Ellen, Laura, Anne, and Kimberly, and to my parents

B.E.V.
Contents

PREFACE ix

1 HYDROLOGIC PRINCIPLES 1
 1.1 Introduction to Hydrology 1
 1.2 Weather Systems 8
 1.3 Precipitation 23
 1.4 The Hydrologic Cycle 35
 1.5 Simple Rainfall-Runoff 42
 1.6 Streamflow and the Hydrograph 43
 1.7 Hydrograph Analysis 46
 1.8 Hydrologic Measurement 55
 Summary 62
 Problems 63
 References 71

2 HYDROLOGIC ANALYSIS 74
 2.1 Watershed Concepts 74
 2.2 Unit Hydrograph Theory 77
 2.3 Synthetic Unit Hydrograph Development 87
 2.4 Applications of Unit Hydrographs 102
 2.5 Linear and Kinematic Wave Models 107
 2.6 Hydrologic Loss—Evaporation and ET 111
 2.7 Hydrologic Loss—Infiltration 122
 2.8 Green and Ampt Infiltration Method 128
 2.9 Snowfall and Snowmelt 138
 Summary 146
 Problems 148
 References 157

3 FREQUENCY ANALYSIS 163
 3.1 Introduction 163
 3.2 Probability Concepts 170
 3.3 Random Variables and Probability Distributions 172
3.4 Return Period or Recurrence Interval 183
3.5 Common Probabilistic Models 187
3.6 Graphical Presentation of Data 204
3.7 Regional Analysis 217
3.8 Related Topics 218
 Summary 219
 Problems 220
 References 231

4 FLOOD ROUTING 235
 4.1 Hydrologic and Hydraulic Routing 235
 4.2 Hydrologic River Routing 242
 4.3 Hydrologic Reservoir Routing 251
 4.4 Governing Equations for Hydraulic River Routing 259
 4.5 Movement of a Flood Wave 263
 4.6 Kinematic Wave Routing 266
 4.7 Hydraulic River Routing 276
 Summary 285
 Problems 286
 References 294

5 HYDROLOGIC SIMULATION MODELS 297
 5.1 Introduction to Hydrologic Models 297
 5.2 Steps in Watershed Modeling 301
 5.3 Description of Major Hydrologic Models 302
 5.4 HEC-HMS Flood Hydrograph Theory 306
 5.5 Application of HEC-HMS to Watersheds 315
 5.6 HEC-HMS Watershed Analysis: Case Study 325
 Summary 335
 Problems 335
 References 339

6 URBAN HYDROLOGY 341
 6.1 Characteristics of Urban Hydrology 341
 6.2 Review of Physical Processes 347
 6.3 Rainfall Analysis in Urban Basins 355
 6.4 Methods for Quantity Analysis 365
 6.5 Sewer System Hydraulics 379
 6.6 Control Options 384
Contents

6.7 Computer Models 389
6.8 SWMM Case Study: Evaluation of Decentralized Stormwater Controls for Urban Flooding in Austin, Texas 392
Summary 414
Problems 414
References 427

7 FLOODPLAIN HYDRAULICS 437
7.1 Uniform Flow 437
7.2 Uniform Flow Computations 441
7.3 Specific Energy and Critical Flow 446
7.4 Occurrence of Critical Depth 450
7.5 Nonuniform Flow or Gradually Varied Flow 451
7.6 Gradually Varied Flow Equations 451
7.7 Classification of Water Surface Profiles 456
7.8 Hydraulic Jump 460
7.9 Introduction to the HEC-RAS Model 462
7.10 Theoretical Basis For HEC-RAS 463
7.11 Basic Data Requirements (Steady State) 465
7.12 Optional HEC-RAS Capabilities 469
7.13 Bridge Modeling in HEC-RAS 470
7.14 HEC-RAS Features 476
Summary 490
Problems 490
References 494

8 GROUND WATER HYDROLOGY 496
8.1 Introduction 496
8.2 Properties of Ground Water 499
8.3 Ground Water Movement 504
8.4 Flow Nets 509
8.5 General Flow Equations 512
8.6 Dupuit Equation 514
8.7 Streamlines and Equipotential Lines 519
8.8 Unsaturated Flow 520
8.9 Steady-State Well Hydraulics 521
8.10 Unsteady Well Hydraulics 529
8.11 Water Wells 540
8.12 Numerical Groundwater Modeling by Phillip de Blanc 543
 Summary 555
 Problems 556
 References 561

9 DESIGN APPLICATIONS IN HYDROLOGY 563
9.1 Introduction 563
9.2 Drainage Collection Systems 564
9.3 Design of Culverts 579
9.4 Detention Basins Used to Mitigate Project Impacts 594
9.5 Floodplain Management Design Issues 598
 Summary 611
 Problems 611
 References 613

10 GIS AND SPATIAL INFORMATION IN HYDROLOGY 615
10.1 Introduction 615
10.2 GIS Data Structures and Formats 616
10.3 Earth Datums, Coordinate Systems, and Scale 619
10.4 Spatial Representation Hydrologic Parameters 622
10.5 Spatial Representation of Topography 626
10.6 GIS-Based Hydrology and Hydraulics 630
10.7 Clear Creek Watershed: Data Collection and Preprocessing for
 Hydrologic and Hydraulic Analysis 632
10.8 GIS Tools for Hydrologic and Hydraulic Modeling 637
 Summary 638
 References 640

11 RADAR RAINFALL APPLICATIONS IN HYDROLOGY 643
11.1 Introduction 643
11.2 Radar Background 644
11.3 Hydrologic Applications of Radar 647
11.4 Gage Adjustment of Radar 654
11.5 Hydrologic Applications 658
11.6 Watershed Vflo® Case Study—The Woodlands, Tx 663
 Summary 669
 References 669
The field of hydrology is of fundamental importance to civil and environmental engineers, hydraulic engineers, hydrogeologists, and other earth scientists because of the overall significance of water in modern society. Topics include water supply, major floods, droughts and their management, urban drainage and stormwater issues, floodplain management, climate change, and water quality impacts. In recent years, hurricanes and storm surge have caused significant coastal disasters, especially in coastal areas where urban development has expanded rapidly. This book was written to address the computational emphasis of modern hydrology both at an undergraduate and graduate level, and to provide a balanced approach in terms of theory and important applications in hydrologic engineering and science. A particular emphasis in the sixth edition is the incorporation of new examples, homework, and computer modeling applications.

Increasing use and sophistication of computer software and the accessibility of large-scale data have revolutionized the daily practice of hydrology. The impact of transferring online data from governmental and scientific sources to the practicing hydrologist or student has been phenomenal. Hydrologic rainfall data, digital terrain models, and mapping software linked with hydrologic modeling now allow complex problems to be solved efficiently. Geographical information systems (GIS) and radar rainfall have greatly improved our ability to predict hydrologic response. A number of major improvements have been made to existing hydrologic models, such as HEC-HMS, HEC-RAS, and EPA SWMM. These advances are highlighted with examples in the sixth edition. Important websites and links currently used routinely in hydrology are listed in Appendix E and can also be found at the textbook website: hydrology.rice.edu. While the entire textbook was updated with many new examples and new homework problems, the following lists the most important updates incorporated for the sixth edition.

- Chapter 6: New SWMM5 example embedded in a real case study of the application of decentralized stormwater controls
- Chapter 7: New HEC-RAS discussion with a new detailed example
- Chapter 8: New examples in groundwater modeling
- Chapter 10: New chapter on GIS in Hydrology with a new example
- Chapter 11: Completely updated and includes new Vflo® example
• Chapter 12: New chapter highlighting flood policy evolution in the United States.
• Chapter 13: New chapter on water resources case studies across America.

The sixth edition of the text is still divided into three main sections. **The first section**, consisting of the first four chapters, covers traditional topics in hydrology related to the water balance such as: (1) hydrologic principles, hydrologic cycle, and measurement techniques, (2) hydrologic analysis using hydrographs for rainfall-runoff, (3) statistical and flood frequency analysis, and (4) hydrologic and hydraulic flood routing methods. These chapters provide a lot of the basis for more applied modeling applications in later chapters of the text. Many new figures, examples, and homework problems have been included throughout.

The second major section. Chapters 5 through 9, is designed to apply hydrologic theory and available hydrologic modeling techniques to several areas of engineering hydrology and design: watershed analysis, floodplain delineation, urban stormwater, ground water, and drainage design. The latest methods and computer models are described in enough detail for practical use. Updated examples and new case studies are also provided. Chapter 5, Hydrologic Simulation Models, has been updated to include the latest versions of the HEC-HMS model. Chapter 6, Urban Hydrology, presents methods and reviews of available computer models for pipe and open channel storm drainage systems. The Storm Water Management Model (SWMM5) is highlighted with a new watershed planning example. Chapter 7, Floodplain Hydraulics, first covers open channel flow concepts, including uniform flow and critical flow. These concepts form the basis for various hydraulic analyses such as water surface profile computations in a hydraulic model, HEC-RAS, described in detail with a new case study demonstrating the power of the model in steady and unsteady mode to evaluate natural floodplains. Chapter 8 presents ground water hydrology as a stand-alone chapter, including flow in porous media, aquifer properties, well mechanics, and computer applications. Governing equations of flow are derived and applied to a number of ground water problems, and a new example has been added. Chapter 9 is a comprehensive chapter on design applications in hydrology. It addresses design rainfall, small watershed design, hydraulic design, detention pond design, detailed culvert design, and floodplain mitigation design issues.

The final major section includes four chapters (10, 11, 12, and 13) that have been completely redone to cover a variety of interesting and relevant topics such as GIS data analysis and hydrologic computation, radar rainfall and watershed evaluation, severe storm impacts and flood management, and water resource case studies from across the United
States. No other hydrology textbook presents this type of material all in one place. Chapter 10 presents current geographic information systems (GISs) and digital elevation models (DEMs) as important tools for watershed and land use analysis, hydrologic modeling, and advanced floodplain delineation. Many useful hydrologic datasets and software are now widely available in high-resolution digital form on the web (see Appendix E). Chapter 11 depicts some of the latest technology on the use of NEXRAD radar data to estimate rainfall intensities over watershed areas. Radar rainfall has greatly improved our ability to predict rainfall patterns over a watershed and offers real advantages for hydrologic flood alert systems.

Chapter 12 is a new chapter on flood control and risk management in the United States and includes a number of new examples from across the country, including discussion of Mississippi River flood control strategies and the surge mitigation response in New Orleans from Katrina. Chapter 13 is also a new chapter for the sixth edition, and details major water resources projects around the United States with detailed case studies from the Colorado River, the Columbia River, major flooding issues in Texas, and a water rights issue between Florida and Georgia.

The sixth edition of the text should provide the civil or hydraulic engineering or science student with all the necessary theory to understand principles of hydrology, hydrologic modeling, floodplain hydraulics and analysis, data analysis, and water resources management in the modern digital world. The student or practicing engineer should find the book a useful reference for hydrologic methods, current models, design examples, and extensively documented case studies. In addition, simple calculations and spreadsheet examples are utilized and highlighted in numerous places in the sixth edition, which contains over 80 worked examples, over 220 homework problems, and 13 major case studies.

The Internet offers many sources for access to regional data with minimal cost and effort. Among those, U.S. Geological Survey, National Weather Service, National Resources Conservation Service, U.S. Army Corps of Engineers, and other state and local agencies should be emphasized for students as likely sources of regional hydrologic data. The textbook website (hydrology.rice.edu) contains a complete set of PPT slides for classroom instruction, along with datasets, spreadsheets, modeling hints, tutorials, and other resources. Dr. Bedient maintains the website that is available to any instructor and student in the course at no charge. These resources are designed to improve the teaching of a hydrology course at either the undergraduate or graduate level. In addition, an updated Solutions Manual is available for instructors. For more details on available resources, see the textbook web site—hydrology.rice.edu—.
ACKNOWLEDGMENTS

The current edition of the textbook was developed over a period of 35 years, beginning in 1982, from original course notes in a class in Hydrology and Watershed Analysis at Rice University. During the many years of interaction with colleagues and students, the book evolved into its present form with emphasis on simple examples, clear explanations, and modern computational methods. The sixth edition includes updated text, homework, and examples in all chapters, and new chapters written by a number of amazing colleagues. I am of course indebted to my co-authors, Dr. Wayne Huber and Dr. Baxter Vieux for their invaluable contributions over the years and the new updates in Chapters 3, 6, and 11. I am also indebted to Dr. Wesley Highfield and Dr. Antonia Sebastian for a newly revised Chapter 10, Dr. Antonia Sebastian and Avi Gori for a newly revised Chapter 12, and Dr. Nick Fang, Dr. Andrew Juan, and Catherine Nikkel for a newly revised Chapter 13. Significant example updates are included in Chapter 7 (Dr. Jacob Torres) and Chapter 8 (Dr. Phil DeBlanc). We also thank Dr. Jeri Stedinger of Cornell University for his highly informed help in updating the Bulletin 17B flood frequency analysis procedures described in Chapter 3.

The City of Austin Watershed Protection Department led and funded the project that was used as the SWMM5 Case Study in Chapter 6, Section 8. Geosyntec Consultants was the prime contractor and lead modeler, with assistance from Chan and Partners Engineering, Heather Venhaus, Linda Pechacek, ACR LLC, and Dr. Michael Barrett. Key staff at the City of Austin included Mike Kelly, Leila Gosselink, and Roger Glick.

We are particularly indebted to the following individuals for their careful review of the draft manuscript and for numerous suggestions and comments: Holly Stark, Senior Editor at Pearson, was instrumental in guiding the significant changes for this sixth edition; the authors thank all the professionals at Pearson for their efforts on our behalf, especially Scott Disanno, Carole Snyder, and Preethi Sundar.

A successful textbook always represents a team effort, and the support team at Rice University has been excellent in their organization and great attention to detail. Special thanks are due to Megan Goings and Rik Hovinga at Rice University for their technical skills in organizing and reviewing text and figures, permissions, and for providing valuable input to examples and homework problems. We would also like to thank Rice University students Matt Garcia, Alison Archibal, Bob Zhang, and Toby Li who assisted greatly in developing new problems, solving examples, and developing and checking new homework solutions for the sixth edition.

Philip B. Bedient, Rice University
Wayne C. Huber, Oregon State University, Emeritus
Baxter E. Vieux, University of Oklahoma
Philip B. Bedient is the Herman Brown Professor of Engineering with the Department of Civil and Environmental Engineering, Rice University, Houston, TX. He received the PhD degree in environmental engineering sciences from the University of Florida in 1975. He is a registered professional engineer and teaches and performs research in surface hydrology, modeling, and flood prediction systems, and ground water hydrology. He has directed over 60 research projects over the past 41 years, and has written over 200 journal articles and conference proceedings over that time. He has also written four textbooks in the area of surface water and groundwater hydrology. He received the Shell Distinguished Chair in environmental science (1988–92), the C.V. Theis Award in 2007, and he was elected Fellow of ASCE in 2006.

Dr. Bedient has worked on a variety of hydrologic problems nationwide, including river basin analyses, major floodplain studies, flood warning systems, groundwater contamination models, and hydrologic/GIS models in water resources. He has been actively involved in developing radar-based flood prediction and warning, and recently directed the development of a real-time flood alert system (FAS3 and FAS4) for the Texas Medical Center (TMC) in Houston. He has built real-time flood alert systems for several communities across Texas. He currently directs the Severe Storm Prediction Education and Evacuation from Disasters (SSPEED) Center at Rice University, a five-university research organization with private and public entities that predicts and assesses the impacts of severe storms and floods near the Gulf Coast. This center is devoted to developing real-time flood alert and surge alert systems for the coastal areas around Houston such as the Houston Ship Channel, and also evaluates structural and nonstructural methods for mitigation of severe storms. Dr. Bedient has received research funding from the U.S. EPA, the U.S. Department of Defense, NSF, the State of Texas, the U.S. Army Corps of Engineers, the City of Houston, and the Houston Endowment.

Wayne C. Huber is Professor Emeritus of Civil and Construction Engineering at Oregon State University, Corvallis and Senior Consultant with Geosyntec Consultants, Portland, Oregon. His doctoral work at the Massachusetts Institute of Technology dealt with thermal stratification in reservoirs, for which he received the Lorenz G. Straub Award from the University of Minnesota and the Hilgard Hydraulic Prize from the American Society of Civil Engineers (ASCE). Additional awards include the ASCE Environmental and Water Resources Council Julian Hinds Award. He is a member of several technical societies and has served several administrative functions within the ASCE, including service as Associate Editor of the Journal of Environmental Engineering since 2007. He is the author of over 120 reports and technical papers, is a registered professional engineer, and has served as a consultant on numerous studies done by public agencies and
private engineering firms. He has served on several review committees of
the National Academy of Sciences, including serving as chair of the Commit-

Beginning at the University of Florida and continuing at Oregon State
University, Dr. Huber’s research has included studies of urban hydrology,
stormwater management, nonpoint source runoff, river basin hydrology,
lake eutrophication, rainfall statistics, and hydrologic and water quality
modeling. He is one of the original authors of the EPA Storm Water Man-
agement Model and helped to maintain and improve the model following
its 1971 introduction. Dr. Huber is an internationally recognized authority
on runoff quantity and quality processes in urban areas.

Baxter E. Vieux is Professor Emeritus in the School of Civil Engi-
eering and Environmental Science, University of Oklahoma, Norman. He
taught courses in hydrology, environmental modeling, GIS applications,
water resources, and water quality management after joining OU in 1990,
until 2013. Prior to his academic career, he spent 10 years with the USDA
Natural Resources Conservation Service (formerly SCS) in Kansas and
Michigan, with his highest position as Assistant State Engineer and Acting
State Engineer. He is a registered professional engineer in several states
and is co-principal and founder of Vieux & Associates, Inc., an engineering
technology company with clients in radar-based hydrology. Dr. Vieux is the
innovator and architect of the first commercially available physics-based
distributed hydrologic model, Vflo®, which was designed from the outset to
use high-resolution maps of terrestrial parameters and radar rainfall. He has
authored over 110 publications in hydrology including Distributed Hydro-
logic Modeling Using GIS, 3rd ed., Springer Publishers, Norwell, Massachu-
setts, Water Science Technology Series, vol. 74. Dr. Vieux has developed
and deployed radar-rainfall monitoring and runoff modeling technology
for operational hydrologic forecasting services in the United States and
internationally.