ABOUT THE EDITORS

Cyril M. Harris, one of the world's leading authorities on shock, vibration, and noise control, currently lectures at Columbia University where he is the Charles Batchelor Professor Emeritus of Electrical Engineering. Dr. Harris has received many honors for his scientific and engineering achievements, including membership in both the National Academy of Sciences and the National Academy of Engineering. He has been the recipient of the Gold Medal and the Sabine Medal of the Acoustical Society of America, the Franklin Medal of the Franklin Institute, the Gold Medal of the Audio Engineering Society, and the A.I.A. Medal of the American Institute of Architects.


Allan G. Piersol is a professional engineer in private practice specializing in the analysis of and design for shock, vibration, and acoustical environments. He received an M.S. degree in engineering from UCLA and is licensed in both mechanical and safety engineering. Mr. Piersol is a Fellow of the Acoustical Society of America and the Institute of Environmental Sciences and Technology, and a recipient of the latter organization’s Irvin Vigness Memorial Award. He is the co-author with Julius S. Bendat of several books published by John Wiley & Sons, the most recent being *Engineering Applications of Correlation and Spectral Analysis*, Second Edition (1993), and *Random Data: Analysis and Measurement Procedures*, Third Edition (2000). He is also a co-author of NASA-HDBK-7005, *Dynamic Environmental Criteria* (2001), and a contributor to numerous other engineering handbooks.
PREFACE


There have been many important developments in the field since the Fourth Edition was published, including advances in theory, new applications of computer technologies, new methods of shock and vibration control, new instrumentation, and new materials and techniques used in controlling shock and vibration. Many new standards and test codes have also been enacted. These developments have necessitated this Fifth Edition, which covers them all and presents a thorough, unified, state-of-the-art treatment of the field of shock and vibration in a single volume that is approximately 10 percent longer than its predecessor edition. A new co-editor, highly regarded as an author in his own right, has collaborated with an original editor in this endeavor. The book brings together a wide variety of skills and expertise, resulting in the most significant improvements in the Handbook since the First Edition.

New chapters have been added and many other chapters updated, revised, or expanded to incorporate the latest developments. Several chapters written by authors who are now deceased have been revised and updated by the editors, but the credits to the original authors are retained in recognition of their outstanding contributions to shock and vibration technology. (For convenience, and to retain as closely as possible the chapter sequence of prior editions, several chapters have been designated Part II or III of an associated chapter.) The editors have avoided duplication of content between chapters except when such repetition is advisable for reasons of clarity. In general, chapters in related areas are grouped together whenever possible. The first group of chapters presents a theoretical basis for shock and vibration. The second group considers instrumentation and measurement techniques, as well as procedures for analyzing and testing mechanical systems subjected to shock and vibration. The third group discusses methods of controlling shock and vibration, and the design of equipment for shock and vibration environments. A final chapter presents the effects of shock and vibration on human beings, summarizing the latest findings in this important area. Extensive cross-references enable the reader to locate relevant material in other chapters. The Handbook uses uniform terminology, symbols, and abbreviations throughout, and usually both the U.S. Customary System of units and the International System of units.

The 42 chapters have been written by outstanding authorities, all of them experts in their fields. These specialists come from industrial organizations, government and university laboratories, or consulting firms, and all bring many years of experience to their chapters. They have made a special effort to make their chapters as accessible
as possible to the nonspecialist, including the use of charts and written explanations rather than highly technical formulas when appropriate.

Over the decades, the Handbook has proven to be a valuable working reference for those engaged in many areas of engineering, among them aerospace, automotive, air-conditioning, biomedical, civil, electrical, industrial, mechanical, ocean, and safety engineering, as well as equipment design and equipment maintenance engineering. Although this book is not intended primarily as a textbook, it has been adopted for use in many universities and engineering schools because its rigorous mathematical basis, combined with its solutions to practical problems, are valuable supplements to classroom theory.

We thank the contributors to the Fifth Edition for their skill and dedication in the preparation of their chapters and their diligence in pursuing our shared objective of making each chapter the definitive treatment in its field; in particular, we thank Harry Himelblau for his many helpful suggestions. We also wish to express our appreciation to the industrial organizations and government agencies with which many of our contributors are associated for clearing for publication the material presented in their chapters. Finally, we are indebted to the standards organizations of various countries—particularly the American National Standards Institute (ANSI), the International Standards Organization (ISO), and the International Electrotechnical Commission (IEC)—as well as to their many committee members whose selfless efforts have led to the standards cited in this Handbook.

The staff members of the professional book group at McGraw-Hill have done an outstanding job in producing this new edition. We thank them all, and express our special appreciation to the production manager, Tom Kowalczyk, for his support.

Cyril M. Harris
Allan G. Piersol
The Contents of Harris™ shock and vibration handbook. Chapter 1. Introduction to the Handbook. Chapter 2. Basic Vibration Theory. Chapter 3. Vibration of a Resiliently Supported Rigid Body. Chapter 4. Nonlinear Vibration. Chapter 5. Self-Excited Vibration. Chapter 6. Dynamic Vibration Absorbers and Auxiliary Mass Dampers. Chapter 7. Vibration of Systems Having Distributed Mass and Elasticity. Chapter 8. Transient Response to Step and Pulse Functions. Chapter 9. Mechanical Impedance/Mobility. Engineering Maintenance A Modern Approach. Chapter 10. Shock and Vibration Transducers. Chapter 11. Cal The book has already been word recognized as an excellent source of technical information for the engineers who specialize in various fields of engineering, including but not limited to mechanical and electrical engineering. The compilation of the material was conducted by two professional engineers possessing a great practical experience which they would like to share. Download books for free. Find books. The first group discusses theory; the second considers instrumentation and measurements, and procedures for analyzing and testing systems subjected to shock and vibration. Vibration that is induced by ground motion and fluid flow is considered next; then methods of controlling shock and vibration; followed by chapters on packaging engineering to prevent equipment from being damaged in transit; on the theory and practice of equipment design; and on the effects of shock and vibration on humans. New material includes computer techniques for solving problems, new instrumentation based on microchip