This book is an outcome of extensive experiences of practicing engineers who have worked in the professional field as well as those of research and teaching. The students and the practicing engineers, through the book, can share the knowledge and experience acquired during their long professional careers.

An engineer must know the basic design aspects even if he opts to be a construction engineer or a manager and, more so if he prefers to be a designer or a research worker. This has been kept in view.

The entire subject matter is treated in following 5 parts:

PART I : GENERAL AND INDEX PROPERTIES

1. ROCKS
2. SOILS
3. SOIL PARTICLES
4. DRY SOIL
5. SOIL MOISTURE
6. UNIT WEIGHT
7. SOIL CLASSIFICATION

PART II : DERIVED PROPERTIES

8. PERMEABILITY
9. SEEPAGE AND UPLIFT
10. DISTRIBUTION OF PRESSURE
11. COMPRESSIBILITY AND CONSOLIDATION
12. SHEAR STRENGTH
13. LABORATORY MEASUREMENT OF SHEAR STRENGTH
14. EARTH PRESSURES
15. BEARING CAPACITY

PART III : FIELD INVESTIGATIONS

16. SITE INVESTIGATION
17. FIELD EQUIPMENT
18. FIELD TESTS
19. INSTRUMENTATION

PART IV : DESIGNS

20. EARTH RETAINING WALLS
21. CUTS AND EMBANKMENTS
22. FOUNDATIONS - GENERAL
23. SHALLOW FOUNDATIONS – FOOTINGS AND RAFTS
24. DEEP FOUNDATIONS – PILES AND UNDER REAMED PILES
25. TIEBACKS AND ANCHORS
26. MACHINE FOUNDATIONS
27. ROADS AND RUNWAYS
28. SLABS ON GRADE
29. REINFORCED EARTH
30. DAMS

PART V : MISCELLANEOUS

31. DRAINAGE AND DEWATERING
32. SWELLING SOILS
33. SOIL STABILIZATION
34. SOME CASE HISTORIES
35. THE STORY OF SOIL MECHANICS

APPENDICES

REFERENCES
ACKNOWLEDGEMENTS
INDEX
PART I: GENERAL AND INDEX PROPERTIES

Chapter 1 ROCKS
1-1 The Origin
1-2 Identifying Rocks
1-3 Indian Geology
Exercise 1

Chapter 2 SOILS
2-1 Particle Size
2-2 Formative Classification
Exercise 2

Chapter 3 SOIL PARTICLES
3-1 Particle – Structure and Shape
3-2 Soil Structure
3-3 Particle-size Determination
3-4 Indian Standard Sieves
3-5 Stokes’ Law
3-6 Water as Medium
3-7 Sedimentation Analysis
3-8 Particle-size Distribution Curves
3-9 Illustrative Examples
Exercise 3

Chapter 4 DRY SOIL
4-1 Dry Unit Weight
4-2 Void Ratio
4-3 Porosity
4-4 Relative Density
4-5 Specific Gravity
4-6 Illustrative Examples
Exercise 4

Chapter 5 SOIL MOISTURE
5-1 Surface Area
5-2 Hygroscopic Moisture
5-3 Capillary Water
5-4 Capillary Force
5-5 Gravitational Water
5-6 Submerged Unit Weight
5-7 Quick-sand and Boiling
5-8 Determination of Moisture Content
5-9 Saturation
5-10 Atterberg Limits
5-11 Determination of Atterberg Limits
Exercise 5

Chapter 6 UNIT WEIGHT
6-1 Measurement of Unit Weight
6-2 Compaction
6-3 Compaction Measurement
6-4 Illustrative Examples
Exercise 6

Chapter 7 SOIL CLASSIFICATION
7-1 Methods of Classifying Soils
7-2 Triangle Textural Classification
7-3 General Engineering Classification
Exercise 7

PART II: DERIVED PROPERTIES

Chapter 8 PERMEABILITY
8-1 Darcy’s Law
8-2 Poiseuille’s Law
8-3 Factors Influencing Permeability
8-4 Permeability of Stratified Layers of Soils
8-5 Laboratory Determination of Permeability
8-6 Constant Head Permeameter
8-7 Variable Head Permeameter
8-8 Field Determination of Permeability
8-9 Illustrative Examples
Exercise 8

Chapter 9 SEEPAGE AND UPLIFT
9-1 Laplace Equations
9-2 Buoyancy
9-3 Uplift on Gravity Dams
9-4 Uplift in Bridge Piers
9-5 Uplift in Dock Walls
9-6 Uplift in Dry Docks
Exercise 9

Chapter 10 DISTRIBUTION OF PRESSURE
10-1 Contact Stresses
10-2 Contact Pressures for Eccentric Loads
10-3 Linear Pressure Distribution
10-4 Köglfer Method of Pressure Distribution
10-5 Boussinesq Theory of Pressure Distribution
10-6 Westergaard Equations
10-7 Mindlin’s Theory of Pressure Distribution
10-8 Experimental Results
10-9 Illustrative Examples
Exercise 10

Chapter 11 COMRESSIBILITY AND CONSOLIDATION
11-1 Terms in Common Use
11-2 Elastic Compression
11-3 Compressibility
11-4 Modulus of Volume Change
11-5 Compression Index
11-6 Illustrative Examples
11-7 Process of Consolidation
11-8 Illustrative Example
11-9 Terzaghi Theory of Consolidation
11-10 Application of Terzaghi Theory of Consolidation
11-11 Illustrative Example
11-12 Laboratory Tests for Consolidation
11-13 Settlement Correction
11-14 Russian Method for Estimating Settlement
11-15 Illustrative Examples
Exercise 11

Chapter 12 SHEAR STRENGTH
12-1 Stress Notation
12-2 Strain Notation
12-3 Mohr’s Circle
12-4 Shear Resistance
12-5 Coulomb’s Law
12-6 Shear Failure and Mohr’s Circles
12-7 Effective Stress and Neutral Stress
12-8 Modified Coulomb’s Law
12-9 Estimation of Shear Strength Parameters
12-10 Strength Theories
12-11 Illustrative Examples
Exercise 12

Chapter 13 LABORATORY MEASUREMENT OF SHEAR STRENGTH
13-1 Shear Box Test
13-2 Unconfined Compression Test
13-3 Triaxial Compression Test
13-4 Vane Shear Test
13-5 Factors Influencing the Tests
13-6 Selection of Test and Technique
13-7 Review of Test Results
13-8 Illustrative Examples
Exercise 13

Chapter 14 EARTH PRESSURES
14-1 Earth Pressure at Rest
14-2 Illustrative Example
14-3 Earth Pressures
14-4 Illustrative Example
14-5 Rankine’s Theory
14-6 Coulomb-Résal – Bell Theory
14-7 Illustrative Example
14-8 Wall Friction
14-9 Coulomb’s Wedge Theory
Exercise 14
SOIL MECHANICS AND FOUNDATION ENGINEERING
DETAILED CONTENTS

14-10 Illustrative Example
14-11 Graphical Methods – Cohesionless Backfills
14-12 Coulomb’s General Solution for Cohesionless Backfill
14-13 Curved Surfaces of Rupture
14-14 Illustrative Example
14-15 General Solutions for Cohesive – Frictional Backfill
14-16 Illustrative Example
14-17 Pressures on Lateral Supports in Open Cuts
Exercise 14

Chapter 15 BEARING CAPACITY
15-1 Definitions
15-2 Safe Bearing Capacity According to Soil Type
15-3 Analytical Methods for Calculating Bearing Capacity
15-4 By the Theory of Elasticity
15-5 With Earth Pressure Theory
15-6 According to the Theory of Plasticity – Prandtl’s Theory
15-7 Terzaghi’s Theory for Shallow Foundations
15-8 Illustrative Example
15-9 Brinch Hansen’s Contribution
15-10 Illustrative Examples
15-11 Field Tests
15-12 Deep Foundations
15-13 Factor of Safety
15-14 Permissible Settlements
Exercise 15

PART III : FIELD INVESTIGATIONS
Chapter 16 SITE INVESTIGATION
16-1 Objective
16-2 Scope
16-3 Reconnaissance
16-4 Earlier Uses
16-5 Disposition of Pits and Bores
16-6 Depth of Foundation
16-7 Ground-Water Table
16-8 Methods of Sampling
16-9 Methods of Sub-soil Exploration
16-10 Special Programme of Investigation
Exercise 16

Chapter 17 FIELD EQUIPMENT
17-1 Exploratory Drilling
17-2 Undisturbed Sampling
Exercise 17

Chapter 18 FIELD TESTS
18-1 Empirical field tests
18-2 Standard Penetration Test
18-3 Illustrative Example
18-4 Cone Penetration Test
18-5 CBR Test
18-6 Direct field tests
18-7 Plate Load Test
18-8 Vane Shear Test
18-9 Permeability Test
18-10 Field Density Test
18-11 Field Pressuremeter Test (PMT)
Exercise 18

Chapter 19 INSTRUMENTATION
19-1 Purpose of Instrumentation
19-2 Deciding for Instrumentation
19-3 Instruments
19-4 Applications
19-5 Guidelines for Instrumentation
Exercise 19

PART IV : DESIGNS
Chapter 20 EARTH RETAINING WALLS
20-1 Forces Acting on an Earth Retaining Wall
20-2 Stability Considerations
20-3 Earth Pressures
20-4 Drainage and Weep Holes
20-5 Hydraulic Pressure
20-6 Selection of Type of the Wall
20-7 Gravity Walls
20-8 Illustrative Examples
20-9 Reinforced Concrete Walls
20-10 Sheet Pile Wall
20-11 Design of Anchored Sheet Pile Wall
20-12 Illustrative Examples
Exercise 20

Chapter 21 CUTS AND EMBANKMENTS
21-1 Cohesionless Soils
21-2 Illustrative Example
21-3 Cohesive Soils
21-4 Stability Analysis
21-5 Natural Slopes
21-6 Illustrative Examples
Exercise 21

Chapter 22 FOUNDATIONS – GENERAL
22-1 Preliminary Selection of the Type of Foundation
22-2 Distribution of Pressure
22-3 Bearing Capacity
22-4 Settlement
22-5 Uplift
22-6 Materials of Construction and Environmental Corrosion
22-7 Foundation Types
22-8 Piers and Caissons
22-9 Special Techniques
Exercise 22

Chapter 23 SHALLOW FOUNDATIONS – FOOTINGS AND RAFTS
23-1 Footings
23-2 Illustrative Example
23-3 Raft Foundations
23-4 Illustrative Example
Exercise 23

Chapter 24 DEEP FOUNDATIONS – PILES AND UNDER REAMED PILES
24-1 Piles – General
24-2 Timber Piles
24-3 Illustrative Examples
24-4 Precast Reinforced Concrete Piles
24-5 Illustrative Examples
24-6 Steel Piles
24-7 Bored Piles and Shell Piles
24-8 Under Reamed Piles
24-9 Bored Compaction Piles
24-10 Large Diameter Bored Piles
Exercise 24

Chapter 25 TIEBACKS AND ANCHORS
25-1 Tiebacks
25-2 Anchors with Normal Pressure Grouts
25-3 High Pressure Grouts
25-4 Anchors with High Pressure Grouts
25-5 Tendons
25-6 Creep and Cyclic Loading
25-7 Corrosion Protection
25-8 Uplift
Exercise 25

Chapter 26 MACHINE FOUNDATIONS
26-1 Types of Machine Foundations
26-2 General Requirement of Machine Foundations
26-3 Design Parameters
26-4 Physical Properties of Elastic Base – Soil Below Foundation
26-5 Expression for Spring Stiffness of Elastic Supports
26-6 Couzens’ Table for Weight of Foundations
26-7 Foundations for Impact Type Machine
26-8 Illustrative Example
26-9 Block Type Machine Foundations
26-10 Single-Mass Spring System
26-11 Semi-empirical Design of a Block Foundation as a Single-mass Spring System
Exercise 26
Chapter 27 ROADS AND RUNWAYS
27-1 Flexible Road Pavements
27-1-1 History of the Development of Design Methods
27-1-2 Present Design Methods
27-1-3 Design in Practice
27-1-4 Design Based on Traffic – As per IRC
27-2 Illustrative Examples
27-3 Rigid Road Pavements
27-3-1 Estimation of Total Thickness
27-3-2 Simplified Approach
27-3-3 Westergaard Theory
27-3-4 Equivalent Single-wheel Load
27-3-5 Modulus of Subgrade Reaction
27-3-6 Warping Stresses in Concrete Pavement
27-3-7 Suggested Thicknesses
27-3-8 Mud Pumping
27-3-9 Design of Rigid Pavements
27-3-10 Design of Joints
27-4 Illustrative Examples
27-5 Load Distribution Theory of Road Pavements
27-5-1 Concrete Pavements
27-5-2 Pavement for Load Distribution
27-5-3 Initial Pressure Distribution
27-5-4 Conclusions
27-6 Illustrative Examples
27-7 Runway Pavements
27-7-1 Equivalent Single-Wheel Loads
27-7-2 Gear Arrangements or Configurations
27-7-3 Coverages
27-7-4 Designs of Runway Pavements
27-8 Illustrative Example
27-9 History of Concrete Roads and Concrete Roads in India
27-9-1 History of Concrete Roads in Europe
27-9-2 History of Concrete Roads in USA
27-9-3 Concrete Roads in India
27-10 Subgrade Improvement
27-10-1 Soil Admixture
27-10-2 Lime or Cement Admixture
27-10-3 Thermal Treatment
27-10-4 Sand Piles
27-10-5 Water Proofing
27-11 Points for Design of Pavements on Expansive Soils
27-12 Geotextiles
27-13 Rehabilitation of Existing Pavements – Overlays
27-13-1 Bituminous Overlays
27-13-2 Cement Concrete Overlays
Exercise 27
Chapter 28 SLABS ON GRADE
28-1 Forces in Slabs on Grade
28-2 Illustrative Examples
28-3 Joints in Slabs on Grade
28-4 Curling
28-5 Reinforced Slab on Grade
28-6 Slab on Grade as Foundation
Exercise 28
Chapter 29 REINFORCED EARTH
29-1 Materials for Reinforced Earth
29-2 Design of Reinforced Structures
29-3 Construction of Reinforced Earth Structures
Exercise 29
Chapter 30 DAMS
30-1 Introduction
30-2 Trends in Design
30-3 Seepage Analysis
30-4 Stability
30-5 Foundation Treatment
30-6 Causes of Failure
Exercise 30
PART V : MISCELLANEOUS
Chapter 31 DRAINAGE AND DEWATERING
31-1 External Drainage
31-2 Internal Drainage
31-3 Dewatering
Exercise 31
Chapter 32 SWELLING SOILS
32-1 Causes of Swelling
32-2 Origin of Swelling Soils
32-3 Prevalence of Swelling Soils
32-4 Identification Tests
32-5 Swell Pressures
32-6 Factors Influencing Swell Pressure
32-7 Swell Pressure and Moisture Content
32-8 Shearing Resistance
32-9 Treatment of Expansive Soils
32-10 Building Foundations
32-11 Road Subgrade and Embankment
32-12 Canals
32-13 Earth Dams
Exercise 32
Chapter 33 SOIL STABILIZATION
33-1 Soil Stabilization for Types of Soils
33-2 Surface Compaction
33-3 Deep Stabilization
33-4 Drainage
33-5 Grouting
Exercise 33
Chapter 34 SOME CASE HISTORIES
34-1 Retaining Walls
34-2 Foundations
Chapter 35 THE STORY OF SOIL MECHANICS
35-1 The Early Period
35-2 Mediaeval Times
35-3 Pre-modern Era
35-4 Present Phase
35-5 The Future Course
APPENDICES
Appendix I ANGLES OF INTERNAL FRICTION, UNIT WEIGHTS AND LIQUIDITY FACTORS OF SOME MATERIALS
Appendix II SOIL BEARING CAPACITIES, PROPERTIES OF GRANULAR AND COHESIVE MATERIALS
Appendix III ENQUIRY DOCUMENT FOR GEOTECHNICAL INVESTIGATIONS
Appendix IV METRIC CONVERSIONS
Appendix V BRITISH AND METRIC EQUIVALENTS
Appendix VI SI UNITS
Appendix VII SOME RELEVANT CODES AND SPECIFICATIONS (OF BUREAU OF INDIAN STANDARDS AND OF INDIAN ROADS CONGRESS)
Appendix VIII THE GIANTS OF SOIL MECHANICS
REFERENCES
ACKNOWLEDGEMENTS
INDEX
Acquaints with investigations of geotechnical and foundation problems in regions with regular and extreme soil conditions. Discusses innovative solutions. Provides international coverage from leading specialists.