Polymer Testing

2nd Edition

With contribution by
Volker Altstädt, Monika Bauer, Christian Bierögel, Gert Busse, Klaus Friedrich, Henrik Höninger, Thomas Lüpke, Bernd Michel, Hans-Joachim Radusch, Falko Ramsteiner, Andreas Schönhals, Jörg Trempler
Preface to the Second Edition

The textbook „Polymer Testing“ is mainly intended for the education of university students and students of universities of applied sciences. This textbook was deemed to be necessary because the testing of polymers has become established as a separate scientific discipline within polymer sciences in recent years. The textbook was first published in German in 2005. An improved English version was published in 2007, and a Russian edition appeared in 2010 with special consideration given to the specific GOST standards.

The positive reviews from our colleagues demonstrate that the concept „Method – Parameters – Examples“ meets students’ needs and is also accepted in practice.

Although there have been no significant changes to basic testing methods since the first edition appeared, there have been considerable advances in the evaluation of structure-property correlations and standardisation. It has become increasingly necessary to provide material-scientific parameters to quantify the relationship between microstructure and macroscopic properties. Therefore, it seemed necessary to publish a second edition. The previous edition has been comprehensively revised, and the new edition covers all the latest developments in the field, including all amendments to the most important polymer test standards up to May 2013.

Using the same concept and methodical structure in the presentation of polymer test procedures, the parameters obtained by the latter and the selected examples, the new edition provides university students and students of universities of applied sciences with a good and fast source of information. This is why the textbook has been widely adopted by universities and universities of applied sciences for the teaching of „Polymer Testing“.

In order to provide support the lecturers, a PowerPoint presentation has been created for all pictures and tables. It can be downloaded from www.hanserpublications.com. In this regard, we would like to thank Prof. Dr.-Ing. Christian Bierögel, in particular, for his valuable advice in the preparation of this edition and especially for the new publication of the pictures, which are now in colour, and his extensive work on producing the PowerPoint presentation of all pictures.
A Wiki dictionary, "Plastics Testing and Diagnostics", has been produced on the scientific basis of the book and of publications from the Merseburg scientific school, and it often provides more detail than the book. The dictionary is available at www.polymerservice-merseburg.de/wiki-lexikon-kunststoffpruefung and can be used for practical work. An extensive compilation of fracture mechanics test specimens and approximation equations to calculate parameters in fracture mechanics are just two examples of what the dictionary offers.

We would like to thank Carl Hanser Verlag, especially Ms. Dr. N. Warkotsch, Ms. Dr. C. Strohm, Ms. Dipl.-Ing. (FH) U. Wittmann and Mr. S. Jörg, for their much-appreciated and reliable assistance.

June 2013
The Editors
Preface to the First Edition

This book is based on the editors’ extensive experience in research, development and education in the field of materials science and especially polymer testing, polymer diagnostics and failure analysis. The results of their work were published in several reference books about deformation and fracture behavior of polymers, in numerous single publications in peer-reviewed scientific journals and in proceedings. Given the fact that the field of science undergoes a rapid and dynamic development it seemed prudent to present these results in a textbook for students.

The following factors convinced us that a comprehensive representation of the state of knowledge was needed:

• The ever-increasing importance of this materials group for continued technical progress led to an increasing share of polymers and compounds in various applications.
• The increased safety awareness led to the development of hybrid methods of polymer diagnostics, which enable a complex view of the connection between loading and material behavior under actual loading conditions and ambient influences
• As a result of the development of fiber-reinforced thermoplastic and thermosetting composite materials, new challenges to polymer testing methods emerged.
• The increasing use of polymers and elastomers in medical technology for various applications requires the development of technological testing methods for viability, serviceability, operating safety and/or service life.
• As a consequence of the trend to miniaturization components (microsystems), more suitable testing methods are necessary for the evaluation of various thermomechanical loadings of materials properties, e.g., in highly integrated electronic components.

In addition, a number of new standards and regulatory codes for polymer testing have been introduced over the past years, further emphasizing the need for a redesigned textbook for this discipline of science. The book presents a comprehensive representation of knowledge provided by respected colleagues from universities, universities of applied sciences and the polymer industry. A list of co-authors as well
as acknowledgements for numerous colleagues and co-workers follow on separate pages.

The editors and co-authors tried hard to overcome the limits of classic polymer testing using ASTM and ISO standards in order to make the importance of polymer testing for the development and application of new polymers, composite materials and materials compounds, as well as the introduction of new technologies, more recognizable.

This book is primarily designed for students of bachelor, diploma and master courses of material science, material technology, plastic technology, mechanical engineering, process engineering and chemical engineering. It can be used by students, teachers of universities and colleges for supplementary studies in the disciplines of chemistry and industrial engineering. The methods of polymer testing are also essential to the development and application of biomedical or nanostructured materials.

With the publication of this book we hope that it will not only serve the important task of training of young scientists in physical and material oriented disciplines, but will also make a contribution to further education of professional polymer testers, design engineers, and technologists.

We thank Carl Hanser Publishers for publishing this book, entitled “Polymer Testing”, especially we are grateful to Dr. Christine Strohm who thoroughly revised the complete text for this edition. We also thank Dr. Paul I. Anderson for the translation of several chapters. The main idea of this book was based on the 1992s book by Dr. Heinz Schmiedel “Handbook of Polymer Testing”, written in German language. We kept the physical-methodical approach and also, the comprehensive chapter “Fracture Toughness Measurements in Engineering Plastics” based on our research work in this field for many years. For example it is pointed out on the extensive collection of fracture mechanics specimen and the evaluation equations for determination of fracture mechanics parameters.

We want to thank sincerely all co-workers from the Center of Engineering Science and the Institute of Polymer Materials e.V. of the Martin-Luther-University of Halle-Wittenberg and all collaborators from the Institute of Materials Science and Technology of the Vienna University of Technology who, with their commitment and their willing cooperation, made the publication of this book possible in the first place.

Sabine Seidler, Vienna
Wolfgang Grellmann, Halle

May 2007
Listing of Co-authors

Prof. Dr. Volker Altstädt
University of Bayreuth, Germany
(Chapter 10)

Prof. Dr. Monika Bauer
Fraunhofer-Einrichtung für Polymermaterialien und Composite PYCO, Teltow, Germany
Technical University of Brandenburg (BTU), Cottbus, Germany
(Part 11.2)

Prof. Dr. Christian Bierögel
Martin Luther University Halle-Wittenberg and Polymer Service GmbH Merseburg, Institute of Martin Luther University Halle-Wittenberg, Germany
(Chapter 2, Part 4.3 and Chapter 9)

Prof. Dr. Gert Busse
University of Stuttgart, Germany
(Chapter 8)

Prof. Dr. Dr. Klaus Friedrich
Institute for Composite Materials (IVW), Technical University of Kaiserslautern, Germany
(Part 4.8)

Dr. Henrik Höninger
IMA Materialforschung und Anwendungstechnik Dresden, Germany (formerly)
(Parts 4.5, 4.6 and 11.3)

Dr. Thomas Lüpke
Kunststoff-Zentrum (KUZ) Leipzig, Germany
(Parts 4.1 and 4.2)

Prof. Dr. Bernd Michel
FhG Institute for Reliability and Microintegration (IZM) Berlin, Germany
(Chapter 12)
Prof. Dr. Hans-Joachim Radusch
Martin Luther University Halle-Wittenberg, Germany
(Chapter 3)

Dr. Falko Ramsteiner
BASF Group Ludwigshafen, Germany (formerly)
(Chapter 7)

Prof. Dr. Andreas Schönhals
Federal Institute for Materials Research and Testing (BAM) Berlin, Germany
(Part 6.3)

Dr. Jörg Trempler
Martin Luther University Halle-Wittenberg, Germany (formerly)
(Part 6.2)

The chapters and sections not listed above were written by the editors.
We owe particular gratitude for their assistance with the development and compilation of the manuscript to:
Ms. Dipl.-Ing. Yvonne Chowdhury, InnoMat GmbH, Teltow, Germany
(Part 11.2),
Ms. Dipl.-Ing. Ivonne Pegel, ESW GmbH, Wedel, Germany (Chapter 10) and
Mr. Dr. Hans Walter, FhG Institute for Reliability and Microintegration (IZM) Berlin, Germany (Chapter 12).

In particular we would like to thank co-author Prof. Dr. Christian Bierögel not only for his contributions to the book, but moreover for his comprehensive assistance and critical advice during the composition of the manuscript.

We thank Prof. Dr. Peter Grau for the professional revision of the parts on microhardness testing.

For the critical revision of single chapters we thank our longtime co-workers Ao. Prof. Dr. mont. Vasiliki-Maria Archodoulaki, Dr. Thomas Koch, Prof. Dr. Ines Kotter, Dr. Ralf Lach, Prof. Dr. Beate Langer and finally Dr. Katrin Reincke.

We thank Ms. Dagmar Fischer for the technical editing of figures and images that we provided in various graphical file formats and their transformation into the format required for printing by Carl Hanser Publishers.
Table of Contents

Nomenclature (Selection) \hspace{1cm} XXI
Terminology \hspace{1cm} XXIX
Symbols and Abbreviated Terms \hspace{1cm} XXXIII

1 Introduction
1.1 The Genesis of Polymer Testing as a Science \hspace{1cm} 1
1.2 Factors Influencing Data Acquisition \hspace{1cm} 4
1.3 Classification of Polymer Testing Methods \hspace{1cm} 5
1.4 Standards and Regulatory Codes for Polymer Testing \hspace{1cm} 7
1.5 Compilation of Standards \hspace{1cm} 10
1.6 References by Area of Specialization \hspace{1cm} 11

2 Preparation of Specimens
2.1 Introduction \hspace{1cm} 15
2.2 Testing Molding Materials \hspace{1cm} 17
2.3 Specimen Preparation \hspace{1cm} 18
2.3.1 General Remarks \hspace{1cm} 18
2.3.2 Specimen Preparation by Direct Shaping \hspace{1cm} 19
2.3.2.1 Production of Specimens from Thermoplastic Molding Materials \hspace{1cm} 19
2.3.2.2 Production of Specimens from Thermosetting Molding Materials \hspace{1cm} 26
2.3.2.3 Production of Specimens from Elastomeric Materials \hspace{1cm} 28
2.3.3 Specimen Preparation by Indirect Shaping \hspace{1cm} 29
2.3.4 Characterization of Specimen State \hspace{1cm} 31
2.4 Specimen Preparation and Conditioning \hspace{1cm} 33
2.5 Compilation of Standards \hspace{1cm} 36
2.6 References \hspace{1cm} 38

3 Determining Process-Related Properties
3.1 Molding Materials \hspace{1cm} 39
3.2 Determining Bulk Material Properties
 3.2.1 Bulk Density, Compacted Apparent Density, Fill Factor
 3.2.2 Pourability, Angle of Repose, Slide Angle

3.3 Determining the Properties of Fluids
 3.3.1 Rheological Fundamentals
 3.3.1.1 Viscosity of Newtonian and non-Newtonian Fluids
 3.3.1.2 Temperature and Pressure Dependence of Viscosity
 3.3.1.3 Molecular Mass Influence on Viscosity
 3.3.1.4 Volume Properties
 3.3.2 Measuring Rheological Properties
 3.3.2.1 Rheometry/Viscometry
 3.3.2.2 Rotational Rheometers
 3.3.2.3 Capillary Rheometers
 3.3.2.4 Extensional Rheometers
 3.3.3 Selecting Measurement Methods for Characterizing Polymer Materials

3.4 Compilation of Standards

3.5 References

4 Mechanical Properties of Polymers
 4.1 Fundamental Principles of Mechanical Behavior
 4.1.1 Mechanical Loading Parameters
 4.1.1.1 Stress
 4.1.1.2 Strain
 4.1.2 Material Behavior and Constitutive Equations
 4.1.2.1 Elastic Behavior
 4.1.2.2 Viscous Behavior
 4.1.2.3 Viscoelastic Behavior
 4.1.2.4 Plastic Behavior

4.2 Mechanical Spectroscopy
 4.2.1 Experimental Determination of Time Dependent Mechanical Properties
 4.2.1.1 Static Testing Methods
 4.2.1.2 Dynamic–Mechanical Analysis (DMA)
 4.2.2 Time and Temperature Dependence of Viscoelastic Properties
 4.2.3 Structural Factors Influencing Viscoelastic Properties

4.3 Quasi-Static Test Methods
 4.3.1 Deformation Behavior of Polymers
4.3.2 Tensile Tests on Polymers 110
 4.3.2.1 Theoretical Basis of the Tensile Test 110
 4.3.2.2 Conventional Tensile Tests 113
 4.3.2.3 Enhanced Information of Tensile Tests 122
4.3.3 Tear Test 128
4.3.4 Compression Test on Polymers 130
 4.3.4.1 Theoretical Basis of the Compression Test 130
 4.3.4.2 Performance and Evaluation of Compression Tests 133
4.3.5 Bend Tests on Polymers 138
 4.3.5.1 Theoretical Basis of the Bend Test 138
 4.3.5.2 The Standardized Bend Test 144
4.4 Impact Loading 149
 4.4.1 Introduction 149
 4.4.2 Charpy Impact Test and Charpy Notched Impact Test 150
 4.4.3 Tensile-Impact and Notched Tensile-Impact Tests 155
 4.4.4 Free-falling Dart Test and Puncture Impact Test 158
4.5 Fatigue Behavior 161
 4.5.1 Fundamentals 161
 4.5.2 Experimental Determination of Fatigue Behavior 163
 4.5.3 Planning and Evaluating Fatigue Tests 167
 4.5.4 Factors Influencing the Fatigue Behavior and Service-Life Prediction of Service Life for Polymers 169
4.6 Long-Term Static Behavior 171
 4.6.1 Fundamentals 171
 4.6.2 Tensile Creep Test 173
 4.6.3 Flexural Creep Test 180
 4.6.4 Creep Compression Test 181
4.7 Hardness Test Methods 183
 4.7.1 Principles of Hardness Testing 183
 4.7.2 Conventional Hardness Testing Methods 185
 4.7.2.1 Test Methods for Determining Hardness Values after Unloading 185
 4.7.2.2 Test Methods for Determining Hardness Values under Load 187
 4.7.2.3 Special Testing Methods 191
 4.7.2.4 Comparability of Hardness Values 191
 4.7.3 Instrumented Hardness Test 193
 4.7.3.1 Fundamentals of Measurement Methodology 193
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.7.3.2</td>
<td>Material Parameters Derived from Instrumented Hardness Tests</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>4.7.3.3</td>
<td>Examples of Applications</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>4.7.4</td>
<td>Correlating Microhardness with Yield Stress and Fracture Toughness</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>Friction and Wear</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>4.8.1</td>
<td>Introduction</td>
<td>203</td>
<td></td>
</tr>
<tr>
<td>4.8.2</td>
<td>Fundamentals of Friction and Wear</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>4.8.2.1</td>
<td>Frictional Forces</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>4.8.2.2</td>
<td>Temperature Increase Resulting from Friction</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>4.8.2.3</td>
<td>Wear as a System Characteristic</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>4.8.2.4</td>
<td>Wear Mechanisms and Formation of Transfer Film</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>4.8.3</td>
<td>Wear Tests and Wear Characteristics</td>
<td>208</td>
<td></td>
</tr>
<tr>
<td>4.8.3.1</td>
<td>Selected Model Wear Tests</td>
<td>209</td>
<td></td>
</tr>
<tr>
<td>4.8.3.2</td>
<td>Wear Parameters and Their Determination</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>4.8.3.3</td>
<td>Wear Parameters and Their Presentation</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>4.8.4</td>
<td>Selected Experimental Results</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>4.8.4.1</td>
<td>Counterbody Influence</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>4.8.4.2</td>
<td>Influencing of Fillers</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>4.8.4.3</td>
<td>Influence of Loading Parameters</td>
<td>216</td>
<td></td>
</tr>
<tr>
<td>4.8.4.4</td>
<td>Predicting Properties Via Artificial Neural Networks</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td>4.8.5</td>
<td>Summary</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>Compilation of Standards</td>
<td>219</td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>References</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Fracture Toughness Measurements in Engineering Plastics</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>233</td>
<td></td>
</tr>
<tr>
<td>5.2</td>
<td>Current State and Development Trends</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>Fundamental Concepts of Fracture Mechanics</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>5.3.1</td>
<td>Linear-Elastic Fracture Mechanics (LEFM)</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>5.3.2</td>
<td>Crack-Tip-Opening Displacement (CTOD) Concept</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>5.3.3</td>
<td>J-Integral Concept</td>
<td>243</td>
<td></td>
</tr>
<tr>
<td>5.3.4</td>
<td>Crack Resistance (R-) Curve Concept</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>5.4</td>
<td>Experimental Determination of Fracture Mechanical Parameters</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>5.4.1</td>
<td>Quasi-static Loading</td>
<td>247</td>
<td></td>
</tr>
<tr>
<td>5.4.2</td>
<td>Instrumented Charpy Impact Test</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>5.4.2.1</td>
<td>Test Configuration</td>
<td>251</td>
<td></td>
</tr>
<tr>
<td>5.4.2.2</td>
<td>Maintenance of Experimental Conditions</td>
<td>252</td>
<td></td>
</tr>
</tbody>
</table>
Polymer Testing provides a forum for publication of their work and discussion of matters of mutual interest which are not given full attention in other polymer technology journals. Related Conference Elsevier Science is the official publisher of ESIS - the European Structural Integrity Society - and publishes the proceedings of its Technical Committee meetings.