siring thorough examination of the experiments and evidence concerning chemical vs. electrical neurotransmission, although there is enough detail to pique the interest of the specialist. Rather, this a book for graduate or medical students interested in the characters and events surrounding the discovery of neurotransmission and also for those students of the history of science interested in how world events shape scientific discovery.

Bilal Haider
Yale University School of Medicine
Department of Neurobiology


A widely acclaimed guide for cancer patients and their families, Understanding Cancer is also an immensely helpful read for basic cancer scientists who wish to broaden their perspectives on cancer and appreciate the potential impact of their research.

This book is part of the National Cancer Institute’s TASC (Take a Scientist to the Clinic) seminar series. Coleman begins by outlining the general processes of diagnosis and treatment as a “road map” for cancer patients. Following the “bird’s-eye view,” he expounds on individual subjects, including the origin of cancer, information gathering using diagnostic tests and staging studies, methods of evaluating treatment efficacy, and approaches in weighing long-term risks and benefits of treatment. Conventional treatment modalities including surgery, chemotherapy, radiation therapy, bone marrow transplantation, and hormonal therapies are reviewed with the pros and cons of each option. Combinational regimens composed of multiple modalities also are covered. The book includes two significant updates from the previous edition: discussions on molecular targeted therapy and how clinical trials are conducted to advance translational medicine and grant-limited pools of volunteering patients’ access to novel therapies. In the last chapter, four hypothetical patient stories are presented to illustrate various scenarios from which readers could learn for their own decision-making process. The appendices consist of a concise review of cancer molecular biology, as well as useful tools such as analysis of treatment cost-effectiveness, the performance status scoring systems, and patient’s checklist.

Understanding Cancer provides a handy and informative clinical perspective in explaining how various procedures including diagnosis, staging (clinical and pathological), treatment, and progress assessment are conducted in the healthcare system. Charts illustrating medical concepts and tables listing cancer classifications, terminologies, and current available therapeutics are resourceful references for scientists thinking about translational medicine. It also illuminates the quest of the medical community for further breakthroughs in molecular medicine, driven by collaborations among scientists, clinicians, and patients, to enhance the life expectancy and quality of life for those afflicted by cancer.

Coleman points out that cancer is not merely a medical issue. Diagnosis of cancer can complicate various aspects of patients’ lives. Fear of “their own mortality” may suddenly become more prominent, followed by concerns for their families’ future welfare, their careers, and the financial stresses that might accompany the ordeal. Therefore, personal matters are essential when considering treatment options. Macroscopically, cancer causes socio-economical problems. Government and insurance companies may make use of the analytical tools introduced in this book to evaluate appropriate treatments as well as expenditure and reimbursement schemes.

While scientists in cancer research may skip chapters introducing basic cancer biology, Understanding Cancer helps them view this disease from the perspectives of the patients and clinicians, as well as policy makers and healthcare financiers. This book also serves as an encouraging reminder for basic scientists that their research can have far-
reaching impacts beyond pure intellectual fulfillment. Although scientists may not always be visible, their contributions continuously generate hope for patients and the medical community. I highly recommend this book for scientists who desire to understand cancer in a broader scope, and/or who wish to rekindle the passion that first brought them into cancer research.

Hsin-hao Hsiao
Yale University School of Medicine
Departments of Molecular Biophysics and Biochemistry and Pathology


_Medical Mycology_ is first and foremost a laboratory technique manual. While each chapter begins with some explanatory text providing background on the pathogenic fungi, the bulk of the book is devoted to protocol. The text, edited by Kevin Kavanagh, covers diagnosis of _Candida_ infection by immunohistochemistry, techniques for identification of pathogenic fungi using transmission electron microscopy, analysis of antifungal drug resistance, use of animal models, and additional techniques for molecular analysis and study of virulence. The fungal species most represented in _Medical Mycology_ are _Candida albicans_ (a common cause of periodontal disease and other human fungal infections), _Aspergillus fumigatus_ (a common filamentous fungus responsible for infection in immunocompromised patients), and _Crypтокoccus neoformans_ (a pathogenic yeast infecting immunocompromised patients).

Each chapter is organized logically, with sections devoted to “equipment, materials, and reagents,” and a step-by-step “method.” Figures included in each chapter provide the researcher with examples of results from immunohistochemical stains, for example, and help in identification of fungi. Schematics also are included to aid understanding of molecular pathways and reactions. At the end of each chapter is a list of primary references for further reading. _Medical Mycology_ is a useful guide for molecular, immunological, and cytological techniques that will prove useful to researchers and students alike.

Katie Moy
Yale University Graduate School of Arts and Sciences
Department of Genetics


Internal medicine can be a daunting subject for any medical student hitting the books or hitting the wards. Enter _Case Files Internal Medicine_, an excellent review book geared toward medical students studying for the internal medicine clerkship or USMLE Step 2. This book serves as a comprehensive — but by no means exhaustive — guidebook to common medical problems. The first section provides a brief overview on the proper approach to patients. Following this section is the real meat of the book: 60 fully-explained internal medicine clinical cases. Cases are presented in a random order, so as to simulate the real-life clinical environment. Following the page-long case presentation, the book provides a brief “answer” and then a far more detailed “analysis” of the condition presented. The analysis section for each case is certainly not as detailed as an internal medicine textbook, but it should give the reader a good working knowledge of the appropriate considerations and approach to each case as well as the relevant pathophysiology and treatment.

The format of this book allows for multiple methods of study. Readers looking to rapidly quiz themselves while preparing for exams can simply read the cases and receive quick feedback from the brief answers directly following each case presentation. Also useful for these readers
Receiving a cancer diagnosis can be devastating. Taking the time to talk with a doctor and fully understand treatment options and prognosis can help a person move forward and make decisions about treatment. Never ignore potential cancer symptoms. A person should talk with their doctor if they have observed any worrisome symptoms that are unexplained or persistent. The pathologist sends your doctor a report that gives a diagnosis for each sample taken. Information in this report will be used to help manage your care. The questions and answers that follow are meant to help you understand medical language you might find in the pathology report you received after your lung biopsy. The information that would be in a pathology report based on having all or part of your lung removed (resected) as a treatment for lung cancer is not covered here. What is the normal structure of the lung? When you breathe in, air enters through your mouth or nose and goes into your lungs. Doctors use survival statistics to estimate a patient’s prognosis. Prognosis is the chance of recovery. Survival statistics also help doctors evaluate treatment options. Researchers usually give survival statistics as rates for specific cancer types. Survival rate. The percentage of people who will be alive at a certain time after diagnosis. Survival rates can describe any given length of time. Researchers base 5-year survival statistics on people whose cancer was treated at least 5 years ago. The statistics may not reflect the latest treatment advances. Disease-free and progression-free survival rates. Five-year relative survival rates include people in remission. Remission is the temporary or permanent absence of disease. This survival rate also includes those still receiving treatment.